Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
Heliyon ; 10(9): e30150, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707462

RESUMO

This paper aims to reveal how the refining industry's inputs in Saudi Arabia affect its output and to forecast refining industry dynamics. The variables used in this paper are the refined petroleum products representing the dependent variable, with natural gas liquids, crude oil, labor, and capital acting as explanatory variables covering the period 1990-2020. The long run cointegration of the variables was observed. An error correction model utilizing the Cobb-Douglas production function framework was performed. Furthermore, this study applied the vector autoregressive model (VAR) and its diagnosis tests, including forecast-error variance decomposition (FEVD) and impulse response functions (IRFs). The results indicate that natural gas liquids and crude oil have a significant influence on the refining industry's output. Although capital and labor are significant determinants of output, they do not contribute significantly to output creation in the refining industry. This might be related to some parts of the capital and human resources being directed toward supporting activities, such as administration, technical support, maintenance, transportation, logistics and assigning third-party contractors to perform the main duties related to the production process. Additionally, the petroleum refining industry requires substantial capital resources for construction and maintenance. Thus, the actual measurement of capital input's influence on output was observed in the long run. The results reveal that the refining industry's variation is influenced by both its own characteristics and that natural gas liquid, crude oil, capital, and labor factors have a significant impact on the accuracy of industry forecasts. This study concludes that Saudi Arabia's petroleum refining industry operates under decreasing returns to scale, while the shocks in the refining industry are influenced and caused by external factors.

2.
Biodegradation ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687419

RESUMO

The study was conducted in order to explore the potential of fungi isolated from surface and bottom seawater collected from the fishing harbour of Bizerte on the bioremediation of industrial effluent (IE) contaminated by petroleum hydrocarbon. Among the 128 fungal isolates, 11 were isolated from surface seawater and 7 from bottom seawater, representing 18 taxa in total. The gas chromatography mass spectrometry (GC-MS) was used for the determination of hydrocarbon compounds in IE. An initial screening of fungal growth using six concentrations ranged between 20 and 70% (v/v) IE has allowed the identification of the optimal concentration for fungal growth as well as selection of species able to tolerate high amounts of hydrocarbon. Colorimetric test employing 2,6-dichlorophenol indophenol and gravimetric method was applied for the assessment of fungal growth using 20% EI. By checking the phylogenetic affiliation of the high-performing stains as identified using ITSr DNA sequence, a dominance of Ascomycetes was detected. Indeed, Aspergillus terreus and Penicillium expansum may degrade 82.07 and 81.76% of residual total petroleum hydrocarbon (TPH), respectively. Both species were collected from surface seawater. While, Aspergillus niger, Colletotrichum sp and Fusarium annulatum displayed comparable degradation rates 40.43%, 41.3%, and 42.03%, respectively. The lowest rate of degradation 33.62% was detected in Emericellopsis phycophila. All those species were isolated from bottom seawater, excepting A. niger isolated from surface water. This work highlighted the importance of exploring the potential of fungi isolated from the natural environment on the bioremediation of industrial effluent. Our results promoted the investigation of the potential of the high-performing isolates A. terreus and P. expansum on the bioremediation of IE at pilot-scale and then in situ.

3.
Bioresour Technol ; 398: 130513, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432540

RESUMO

Demonstrating outdoor cultivation of engineered microalgae at considerable scales is essential for their prospective large-scale deployment. Hence, this study focuses on the outdoor cultivation of an engineered Chlamydomonas reinhardtii strain, 3XAgBs-SQs, for bisabolene production under natural dynamic conditions of light and temperature. Our preliminary outdoor experiments showed improved growth, but frequent culture collapses in conventional Tris-acetate-phosphate medium. In contrast, modified high-salt medium (HSM) supported prolonged cell survival, outdoor. However, their subsequent outdoor scale-up from 250 mL to 5 L in HSM was effective with 10 g/L bicarbonate supplementation. Pulse amplitude modulation fluorometry and metabolomic analysis further validated their improved photosynthesis and uncompromised metabolic fluxes towards the biomass and the products (natural carotenoids and engineered bisabolene). These strains could produce 906 mg/L bisabolene and 54 mg/L carotenoids, demonstrating the first successful outdoor photoautotrophic cultivation of engineeredC. reinhardtii,establishing it as a one-cell two-wells biorefinery.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas/metabolismo , Estudos Prospectivos , Chlamydomonas reinhardtii/metabolismo , Fotossíntese , Carotenoides/metabolismo
4.
J Korean Med Sci ; 39(8): e77, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38442720

RESUMO

BACKGROUND: Considering the interactions between heavy metals, a comprehensive evaluation of the effects of exposure to various types of co-interacting heavy metals on health is required. This study assessed the association between dyslipidemia markers and blood mercury, lead, cadmium, iron, zinc, and nickel levels in residents of an abandoned refinery plant. METHODS: A total of 972 individuals (exposed group: 567, control group: 405) living near the Janghang refinery plant in the Republic of Korea were included. Blood mercury, lead, cadmium, iron, zinc, nickel, cholesterol, and triglyceride levels were measured. The combined effect of the six heavy metals on dyslipidemia markers was evaluated using a Bayesian kernel machine regression (BKMR) model and compared with the results of a linear regression analysis. The BKMR model results were compared using a stratified analysis of the exposed and control groups. RESULTS: In the BKMR model, the combined effect of the six heavy metals was significantly associated with total cholesterol (TC) levels both below the 45th percentile and above the 55th percentile in the total population. The combined effect range between the 25th and 75th percentiles of the six metals on TC levels was larger in the exposed group than that in the total population. In the control group, the combined effects of the changes in concentration of the six heavy metals on the TC concentration were not statistically significant. CONCLUSION: These results suggest that the cholesterol levels of residents around the Janghang refinery plant may be elevated owing to exposure to multiple heavy metals.


Assuntos
Dislipidemias , Mercúrio , Metais Pesados , Humanos , Cádmio , Níquel , Teorema de Bayes , Zinco , Ferro , República da Coreia
5.
Sci Rep ; 14(1): 4476, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396129

RESUMO

The main purpose of this research endeavor is to reduce lead concentrations in the wastewater of an oil refinery through the utilization of a material composed of oyster shell waste (MIL-100(Fe)/Cygnea/Fe3O4/TiO2. Initially, iron oxide nanoparticles (Fe3O4) were synthesized via solvent-thermal synthesis. It was subsequently coated layer by layer with the organic-metallic framework MIL-100 (Fe) using the core-shell method. Additionally, the solvent-thermal method was utilized to integrate TiO2 nanoparticles into the magnetic organic-metallic framework's structure. Varieties of analytical analysis were utilized to investigate the physical and chemical properties of the synthetic final photocatalyst. Nitrogen adsorption and desorption technique (BET), scanning electron microscopy (SEM), scanning electron diffraction pattern (XRD), and transmission electron microscopy (TEM). Following the characterization of the final photocatalyst, the physical and chemical properties of the nanoparticles synthesized in each step, several primary factors that significantly affect the removal efficiency in the advanced oxidation system (AOPs) were examined. These variables consist of pH, photocatalyst dosage, lead concentration, and reaction temperature. The synthetic photocatalyst showed optimal performance in the removal of lead from petroleum wastewater under the following conditions: 35 °C temperature, pH of 3, 0.04 g/l photocatalyst dosage, and 100 mg/l wastewater concentration. Additionally, the photocatalyst maintained a significant level of reusability after undergoing five cycles. The findings of the study revealed that the photocatalyst dosage and pH were the most influential factors in the effectiveness of lead removal. According to optimal conditions, lead removal reached a maximum of 96%. The results of this investigation showed that the synthetic photocatalyst, when exposed to UVA light, exhibited an extraordinary capacity for lead removal.

6.
Environ Sci Pollut Res Int ; 31(11): 17339-17353, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38337119

RESUMO

Petroleum spent hydroprocessing catalysts are hazardous solid waste, the efficient recycling of which is a serious challenge to refineries. However, information on the economic feasibility of spent catalysts recycling plants is scarce, which is critical for environmental authorities and decision-makers. In this work, an innovative recycling scheme targeting hydrometallurgical recovery of base metals (Ni, Mo, and V) and transforming low-value Al residue into a high-value boehmite (γ-AlOOH) as the key product was considered an efficient way to beneficiate the hazardous spent hydroprocessing catalysts. A preliminary techno-economic evaluation of such a recycling scheme was performed to assess the feasibility of the proposed recycling scheme. The recovery cost (valuable metals and boehmite) and potential revenue were estimated to study the economics of the process. The preliminary results have suggested that the recycling scheme is economically feasible with a high internal rate of return (IRR) of 12.3%, a net present value of 38.6 million USD, and a short payback period of 8.7 years. Furthermore, a sensitivity analysis (± 10%) conducted on key parameters showed that the selling prices of the finished products and the cost of chemicals were the most important factors affecting plant economics. Overall, the recycling scheme was sustainable and avoided landfilling of spent catalysts as the residue can be beneficiated into a high-value product. The results from the economic feasibility study are likely to assist the stakeholders and decision-makers in making investment and policy decisions for the valorization of spent hydroprocessing catalysts.


Assuntos
Hidróxido de Alumínio , Óxido de Alumínio , Petróleo , Estudos de Viabilidade , Metais , Reciclagem/métodos
7.
J Environ Manage ; 354: 120356, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377757

RESUMO

As of 2022, China has achieved a crude oil processing capacity of 918 million tons, leading to a notable escalation in the production of refinery wastewater. The composition of refinery wastewater is intricate and diverse, posing a substantial challenge to its treatment. In order to facilitate appropriate discharge or reuse, an exhaustive separation process is imperative for refinery wastewater. Conventional pre-treatment processes typically employ inclined plate separators and dissolved air flotation (DAF) for the removal of oil and suspended solids (SS), while sequencing batch reactor (SBR), oxidation ditch, or biological aerated filter (BAF) are employed for the biological treatment process. However, these approaches encounter challenges such as a large spatial footprint, suboptimal treatment efficiency, and high energy consumption. In response to these challenges, this study introduces a novel integrated apparatus consisting of a high-efficiency oil remover (HEOR), coalescence oil remover (COR), and an airlift-enhanced loop bioreactor (AELR). A pilot-scale test was conducted to evaluate the performance of this integrated system in practical field applications. The pilot-scale tests reveal that, without the addition of chemical agents, the petroleum removal efficiency of "HEOR + COR" system was 1.2 times that of DAF. Compared with the SBR system, AELR's volume loading was increased by 1.56 times. The effluent quality achieved in the pilot-scale tests attained parity with that the original process. The "HEOR + COR + AELR" system exhibited energy and carbon emissions reduction of 28% and 30% compared to the "DAF + SBR" system, respectively. Therefore, the operating costs was reduced by approximate 1 Chinese Yuan (CNY) per ton of treated water. This technological advancement serves as a valuable reference for the implementation of low-carbon treatment of refinery wastewater.


Assuntos
Petróleo , Purificação da Água , Águas Residuárias , Eliminação de Resíduos Líquidos , Reatores Biológicos , Carbono
8.
Sci Total Environ ; 918: 170613, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38307286

RESUMO

The photochemical loss of volatile organic compounds (VOCs) significantly alters the capturing source profiles in high-reactivity VOC species and results in an underestimation of secondary pollutants such as ozone (O3) and secondary organic aerosol (SOA). Utilising speciated VOC data from large petrochemical refineries, the research assesses the photochemical loss of various VOC species. Air samples from multiple sites revealed over 99 VOCs, with initial concentrations estimated via a photochemical age-based parameterisation method. The comparative analysis of initial and measured VOC values provided insights into the VOCs' photochemical degradation during transport. Findings highlight that the average photochemical loss of total VOCs (TVOCs) across different refinery process areas varied between 4.9 and 506.8 ppb, averaging 187.5 ± 128.7 ppb. Alkenes dominated the consumed VOCs at 83.1 %, followed by aromatic hydrocarbons (9.3 %), alkanes (6.1 %), and oxygenated VOCs (OVOCs) at 1.6 %. The average consumption-based ozone formation potential (OFP) and SOA formation potential (SOAP) were calculated at 1767.3 ± 1251.1 ppb and 2959.6 ± 2386.3 ppb, respectively. Alkenes, primarily isoprene, 1,3-butadiene, and acetylene, were the most significant contributors to OFP, ranging from 19.9 % to 95.5 %. Aromatic hydrocarbons, predominantly monocyclic aromatics like toluene, xylene, styrene, and n-dodecane, were the primary contributors to SOAP, accounting for 5.0 % to 81.3 %. This research underscores the significance of considering photochemical losses in VOCs for accurate secondary pollution assessment, particularly in high-reactivity VOC species. It also provides new detection methods and accurate data for the characterization, source analysis and chemical conversion of volatile organic compounds in the petroleum refining industry.

9.
Chemosphere ; 346: 140572, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303390

RESUMO

Sulphidic spent caustic (SSC) is an alkaline waste stream which is generated during caustic scrubbing of liquefied petroleum gas and ethylene products. Due to presence of high concentrations of sulphides and phenols, the waste stream requires proper treatment before mixing with the low strength wastewater streams produced from other refinery operations. Electrochemical process is an emerging treatment method that can work efficiently at ambient conditions. The present study reports performance of electro-Fenton (EF) process for the treatment of synthetic SSC wastewater (sulphides = 10 g L-1, phenol = 2 g L-1 and pH = 12.9). The EF runs were carried out for 2 h duration in a reactor equipped with iron electrodes. The effects of H2O2 dose (0.26-1.3 M), current density (1-20 mA cm-2), pH (4.5-12.9) and stirring speed (100-1000 rpm) were investigated on removal of pollutants. The H2O2 was rapidly consumed in initial 30 min during which the significant fraction of the pollutants was degraded or removed. The optimum conditions for EF process were found to be as follows: pH = 4.5, H2O2 dose = 1.05 M, current density = 5 mA cm-2 and stirring speed = 500 rpm. At these conditions, the maximum sulphide and phenol removals from the wastewater were 98% and 91%, respectively. The results will be helpful to the wastewater treatment plant operators worldwide dealing with high concentrations of such pollutants.


Assuntos
Cáusticos , Poluentes Ambientais , Petróleo , Poluentes Químicos da Água , Águas Residuárias , Fenol , Peróxido de Hidrogênio , Resíduos Industriais/análise , Fenóis , Sulfetos , Oxirredução , Eliminação de Resíduos Líquidos/métodos
10.
Environ Res ; 246: 118129, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211718

RESUMO

The depletion of finite fossil fuel reserves and the severe environmental degradation resulting from human activities have compelled the expeditious development and application of sustainable waste to energy technologies. To encapsulate energy and environment in sustainability paradigm, bio waste based energy production is need to be forged in organic bio refinery setup. According to world bioenergy association, biomass can cover 50 % of the primary energy demand of the world. Therefore, the present study focuses on reforming the energy mix for a clean energy generation, where, sample composition of cotton stalk was acidified in dilute (5% wt.) hydrochloric acid (HCL) for analyzing material burnout patterns in biomass conversion systems utilized in organic bio refinery sector. Advanced thermochemical burning technique, which includes pyrolysis and combustion was applied at four different leaching times from 0 to 180 min under nitrogen environment from 0 °C to 500 °C and air from 500 °C to 900 °C, respectively. Different analyses including proximate, ultimate, gross calorific value (GCV), thermos-gravimetric, kinetic, XRD, FTIR, SEM-EDS were used for analyzing the degradation of demineralized cotton stalk at different treatment rates. Proximate study demonstrated that cotton stalk leaching for 180 min has efficiently infused HCL, leading in a significant increase in fixed carbon and higher heating value of 20.23 % and 12.48%, respectively, as well as a reduction in carbon footprint of around 54.80%. The findings of proximate was validated by GCV analysis and CHNS analysis as value of carbon and hydrogen has shown increasing behavior with the time delay in demineralization Thermo-gravimetric and derivative thermo-gravimetric data analyses shows an increasing trend of conversion efficiency, with the maximum increase of 98 % reported for sample 3H.TT.DEM. XRD characterization has reported 23° to 25° angle for all the observed peaks. Sample 3H.TT.DEM has shown maximum angle inclination along with matured crystalline peak. The latter observations has been validated by FTIR spectroscopy as sample 3H.TT.DEM has reported maximum O-H group formation. Sample 3H.TT.DEM has reported lowest activation energy of 139.51 kJ*mole-1 and lowest reactivity of 0.000293649%*min 0C, due to moderate and stable reactiveness. In SEM examination, increment in pore size and number of pores within the structural matrix of cotton stalk was observed with the enhancement in acidulation process. Furthermore, in EDS analysis, 3H.TT.DEM has shown most balanced distribution of the elements. In this research, sustainable transformation of biomass is envisioned to improve the waste bio refinery system, significantly contributing to the achievement of Sustainable Development Goals 7, 12 and 13.


Assuntos
Carbono , Nitrogênio , Humanos , Biomassa , Nitrogênio/análise , Pirólise , Biocombustíveis/análise
11.
Artigo em Inglês | MEDLINE | ID: mdl-38175507

RESUMO

The present investigation highlights the necessity of monitoring some basic physico-chemical water quality indicators and their phytotoxic effect using ecotoxicological bioassays such as "seed germination tests." The phytotoxicity of raw and treated vegetable oil refinery wastewater (VORW) using different treatment processes was assessed through some physiological responses (relative seed germination (RSG), seedling elongation, and germination index (GI)) using Lactuca sativa cultivar. Biotest results of different raw water samples revealed a noticeable correlation between the organic matter content and water phytotoxicity. In fact, VORW showed a very low RSG (17 ± 0.7 to -47 ± 0.58%) and high phytotoxic effects (GI < 50%). The use of coagulation/flocculation (CF) allowed a satisfactory phytotoxicity removal where RSG obtained ranged from 83 ± 1.58 to 90 ± 1.2%. However, the effluent still presents high to moderate phytotoxicity since GI remained below 80% which indicates the presence of toxic elements remaining after CF treatment. When VORW were treated using membrane processes, their phytotoxicity was gradually decreased with the decrease in the membrane pore size. The use of microfiltration membranes (MF), with pore size of 5 µm, 1.2 µm, 0.45 µm, and 0.22 µm, showed RSG values ranged from 37 ± 1.15 to 77 ± 1.68% and GI of less than 80% indicating a moderate to high phytotoxicity. However, the use of ultrafiltration (UF) membranes with molecular weight cut-off (MWCO) of 100 kDa, 30 kDa, and 10 kDa made it possible to achieve an RSG of 100% and an IG exceeding 80% showing that the VORW-treated using UF does not exhibit any phytotoxicity effect. Hence, UF appears to be the most efficient and environmentally friendly technology that could be used for safely treated VORW irrigation purposes compared to CF and MF processes.

12.
Water Environ Res ; 96(1): e10963, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200640

RESUMO

The vegetable oil refinery industry generates highly polluted effluents during oil production, necessitating proper treatment before discharge to prevent environmental hazards. Treating such wastewater has become a major environmental concern in developing countries. Chemical oxygen demand (COD) is a key parameter in assessing the wastewater's organic pollutant load. High COD levels can lead to reduced dissolved oxygen in water bodies, negatively affecting aquatic life. Various technologies have been employed to treat oily wastewater, but microbial degradation has gained attention due to its potential to remove organic pollutants efficiently. This study aims to optimize the biodegradation treatment process for vegetable oil industrial effluent using response surface methodology (RSM). The wastewater's physicochemical properties were characterized to achieve this, and COD removal was analyzed. Furthermore, RSM was used to investigate the combined effects of pH, contact duration, and microbial concentration on COD removal efficiency. The result showed that the microbial strain used recorded a maximum COD removal of 92%. Furthermore, a quadratic model was developed to predict COD removal based on the experimental variables. From the analysis of variance (ANOVA) analysis, the model was found to be significant at p < 0.0004 and accurately predicted COD removal rates within the experimental region, with an R2 value of 90.99% and adjusted R2 value of 82.89%. Contour plots and statistical analysis revealed the importance of contact duration and microbial concentration on COD removal. PRACTITIONER POINTS: Response surface methodology (RSM) optimization achieved a significant chemical oxygen demand (COD) removal efficiency of 92% in vegetable oil industrial effluents. The study's success in optimizing COD removal using RSM highlights the potential for efficient and environmentally friendly wastewater treatment. Practitioners can benefit from the identified factors (pH, contact time, and microbial concentration) to enhance the operation of treatment systems. The developed predictive model offers a practical tool for plant operators and engineers to tailor wastewater treatment processes. This research underscores the importance of sustainable practices in wastewater treatment, emphasizing the role of microbial degradation in addressing organic pollutant loads.


Assuntos
Poluentes Ambientais , Óleos de Plantas , Águas Residuárias , Oxigênio , Concentração de Íons de Hidrogênio
13.
Environ Sci Pollut Res Int ; 31(12): 17634-17650, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37126170

RESUMO

The study aimed to optimize the treatment of oil refinery-contaminated wastewater through modification of the well-established activated sludge process with new nanocomposite (NC) materials to produce high-quality treated effluents for potential reuse. Refinery wastewater samples were collected from one of the major oil refineries, Alexandria, Egypt, where the operation, performance, and efficiency of the current activated sludge (AS) unit were evaluated for 6 consecutive months. Two AS bench scale PVC basins were constructed. Magnetite nanoparticles (Fe3O4 NPs) and magnetite silica (Fe3O4/silica) nanocomposite (NC) were prepared and characterized. Bioremediation trials were carried out in a sequential batch mode using Fe3O4/silica NC-modified AS and control (unmodified AS). The proposed treatment produced high-quality effluents in a very short time (2 h) despite the very high initial pollutant concentration accompanied with a reduction in the produced sludge. The highest removal of TSS, TDS, BOD, COD, and OG from raw industrial wastewater recorded 78.33, 3.6, 87.65, 85.17, and 92.92% compared to 55.3, 12.6, 50.0, 40.22, and 56.84%, respectively, achieved by the unmodified AS unit. The results confirmed that integration of the AS treatment with nanomaterial composite is highly effective, promising, and economic for the treatment of highly toxic and complicated industrial wastewater such as petroleum refinery effluents.


Assuntos
Nanocompostos , Petróleo , Águas Residuárias , Esgotos , Silício , Óxido Ferroso-Férrico , Dióxido de Silício , Eliminação de Resíduos Líquidos/métodos
14.
J Environ Manage ; 351: 119827, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38113788

RESUMO

Oil petroleum production consumes about 1.0-7.2 bbl. The needed water for such production ranges between 0.47 and 7.2 L water to 1.0 L crude. Between 80 and 90% of the consumed water is disposed of as wasted effluents. Consequently, there is an important connection between petroleum production and the contamination of the environment and surface water in addition to their ecotoxicological effects. The objective of the present review is to through light on the hazardous impact of petroleum wastewater on the environment and water ways. The present study presents several wastewater treatment technologies in handling the petroleum produced water (PPW) and reducing the hazardous impact to the environment. Safe reuse is also presented including simple, advanced, and environmentally friendly techniques. The reported treatment technologies are divided into five main categories: membrane technologies, biological treatment processes, electro-chemical coagulation, physical/chemical treatment processes (dissolved air flotation (DAF)/air flotation (IAF), adsorption, and chemical flocculation), and catalytic oxidation including chemicals such as advanced and Fenton oxidation processes (AOPs). The analysis and observation of each treatment process are also presented. Implementing of these processes in sequential and/or in combined to avoid the drawbacks of any poor treatment are discussed. The present review discusses; also, in detail each of these treatment technologies and their efficiency including the observation and conclusions of each one. The study shows; also; how the final treated effluent can be reused for non-potable purposes as an additional water resource according to the degree of decontamination. An additional advantage of treatment is protection of both the environment and the water ways by avoiding any discharge of such hazardous wastewater.


Assuntos
Petróleo , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Petróleo/análise , Eliminação de Resíduos Líquidos/métodos , Conservação dos Recursos Naturais , Água/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos
15.
Int J Biol Macromol ; 258(Pt 1): 128888, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141701

RESUMO

The microwave assisted pretreatment on sugarcane leaf (SCL) biomass for delignification was studied to enhance cellulose digestibility. In this work, microwave assisted with additives were used to delignification SCL for maximize sugar yield recovery. Single factorial and Central composite design (CCD) were employed to optimize the microwave assisted pretreatment conditions for improve delignification efficiency and the sugar yield recovery. The optimized pretreatment conditions were determined to be 4 min pre-treatment time, 500 W microwave power, 1.0 M Na2CO3 and 10 % biomass loading condition produce maximum reducing sugar yield (601 mg g-1) and glucose sugar yield (231 mg g-1) were achieved during saccharification. Pretreated biomass produced reducing sugar and glucose yields that were 4.5 and 4.1 times higher than those of untreated (native) SCL-N biomass, respectively. Additionally, the recyclability study of black liquor, obtained from optimized conditioned treatment of SCL-MSC (Microwave-assisted sodium carbonate pretreated SCL) resulted in considerable saccharification yield up to three pretreatment cycles. The 1H NMR and 13C NMR spectra studies illustrate that aromatic units present in SCL fractionated lignin samples. The variations of structure features and chemical compositions of the raw and pretreated SCL biomass were analyzed by SEM, XRD and XPS analysis. Overall, SCL-MSC pretreatment condition significantly delignification of SCL and led to the maximum sugar production optimized strategies pretreatment conditions was produced maximum amount of sugar, which is great potential for bio-refinery product development.


Assuntos
Lignina , Saccharum , Lignina/química , Saccharum/química , Micro-Ondas , Hidrólise , Carboidratos , Glucose , Biomassa
16.
Comput Struct Biotechnol J ; 21: 5463-5475, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022701

RESUMO

Enzymatic digestion of lignocellulosic plant biomass is a key step in bio-refinery approaches for the production of biofuels and other valuable chemicals. However, the recalcitrance of this material in conjunction with its variability and heterogeneity strongly hampers the economic viability and profitability of biofuel production. To complement both academic and industrial experimental research in the field, we designed an advanced web application that encapsulates our in-house developed complex biophysical model of enzymatic plant cell wall degradation. PREDIG (https://predig.cs.hhu.de/) is a user-friendly, free, and fully open-source web application that allows the user to perform in silico experiments. Specifically, it uses a Gillespie algorithm to run stochastic simulations of the enzymatic saccharification of a lignocellulose microfibril, at the mesoscale, in three dimensions. Such simulations can for instance be used to test the action of distinct enzyme cocktails on the substrate. Additionally, PREDIG can fit the model parameters to uploaded experimental time-course data, thereby returning values that are intrinsically difficult to measure experimentally. This gives the user the possibility to learn which factors quantitatively explain the recalcitrance to saccharification of their specific biomass material.

17.
Environ Sci Pollut Res Int ; 30(56): 119297-119308, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924404

RESUMO

Petroleum refineries generate large amounts of oily sludge which is normally loaded with different residual hazardous petroleum derivatives. Also, the residential complexes affiliated to the petroleum refineries generate considerable volumes of sewage. This study was devoted to investigate the potential of energy recovery from co-bioelectrochemical treatment of petroleum refinery oily sludge (PROS) and sewage using a tubular dual-chambers microbial fuel cell (MFC). Initially, the MFC was operated in a fill and draw mode of 4 cycles, each cycle at a different organic load (OL). The results revealed that maximum removal efficiencies of the organic content as COD were 93.67%, 98.57%, 99.64%, and 99.74%, whereby maximum power outputs were 225 ± 10, 324 ± 7, 1230 ± 18, and 1156 ± 14 mW/m3 for cycle1of OL1 (1138 ± 60 mg/L), cycle2 of OL2 (7000 ± 75 mg/L), cycle3 of OL3 (13,890 ± 50 mg/L), and cycle4 of OL4 (17,100 ± 150 mg/L), respectively. Based on those promising results, the MFC was operated continually for 60 days by feeding the MFC with PROS and sewage at organic loading of 13,000 ± 1000 mg/L. Significant results concerning COD and TPH elimination efficiency > 99.85% and 94.12%, respectively were obtained associated with power output of 1225 ± 25 mW/m3.


Assuntos
Fontes de Energia Bioelétrica , Petróleo , Esgotos , Petróleo/análise , Óleos
18.
Biotechnol Adv ; 69: 108267, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37813174

RESUMO

Traditionally, recombinant protein production has been done in several expression hosts of bacteria, fungi, and majorly CHO (Chinese Hamster Ovary) cells; few have high production costs and are susceptible to harmful toxin contamination. Green algae have the potential to produce recombinant proteins in a more sustainable manner. Microalgal diversity leads to offer excellent opportunities to produce glycosylated antibodies. An antibody with humanized glycans plays a crucial role in cellular communication that works to regulate cells and molecules, to control disease, and to stimulate immunity. Therefore, it becomes necessary to understand the role of abiotic factors (light, temperature, pH, etc.) in the production of bioactive molecules and molecular mechanisms of product synthesis from microalgae which would lead to harnessing the potential of algal bio-refinery. However, the potential of microalgae as the source of bio-refinery has been less explored. In the present review, omics approaches for microalgal engineering, methods of humanized glycoproteins production focusing majorly on N-glycosylation pathways, light-based regulation of glycosylation machinery, and production of antibodies with humanized glycans in microalgae with a major emphasis on modulation of post-translation machinery of microalgae which might play a role in better understanding of microalgal potential as a source for antibody production along with future perspectives.


Assuntos
Biotecnologia , Polissacarídeos , Cricetinae , Animais , Glicosilação , Células CHO , Cricetulus , Proteínas Recombinantes/genética
19.
Environ Monit Assess ; 195(11): 1272, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37794217

RESUMO

Emissions of greenhouse gases from industrial facilities, such as refineries, are one of the most significant environmental problems in many countries. This study aimed to assess the present status of emission sources near a gas refinery region, and the contribution of sources to air pollution was estimated by monitoring CO for a year at a fixed station. This descriptive-analytical study was conducted between January and December 2020. A simulation of CO gas distribution and pollutant concentration prediction was carried out. The results show that the maximum concentration of CO in the 1-h period was 2260 µg/m3, which corresponds to the peak concentration in spring, and in the 8-h period, it was 573 µg/m3, which corresponds to the peak concentration in winter. The studied area's maximum pollutant concentration was also compared to national and international standards for clean air. In all four seasons, the maximum simulated CO concentrations were lower than the Iranian and EPA standards for clean air. Maximum concentrations have occurred in the southern slopes of the study area's heights, and, due to the appropriate wind speed, maximum concentrations in the northeastern mountain peaks occurred at a more considerable distance due to the high altitude of the mountains and the lack of suitable conditions for pollutant escape. Furthermore, because of the height of smokestacks and flares from the ground and the effect of wind on the release height, the concentration of pollutants at the foot of the stacks is low and decreases gradually over a certain distance. Finally, the distribution and deposition of pollutants in the pathway of the smoke were influenced by the type of topography.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Irã (Geográfico) , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Oriente Médio
20.
Molecules ; 28(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37764219

RESUMO

Using different bleaching materials to eliminate or reduce organic volatiles in deteriorated olive oils will positively affect its characteristics. This study aims to identify the volatiles of oxidized olive oil after physical bleaching using selected immobilized adsorbents. Oxidized olive oil was eluted using open-column chromatography packed with silica gel, bentonite, resin, Arabic gum, and charcoal at a 1:5 eluent system (w/v, adsorbent: oxidized olive oil). The smoke point was determined. The collected distilled vapor was injected into GC-MS to identify the volatiles eluted after partial refining with each of these bleaching compounds. The results showed that volatile compounds were quantitatively and qualitatively affected by the type of adsorbents used for the elution of olive oil and the smoking points of eluted oils. The most prominent detected volatile compounds were limonene (14.53%), piperitone (10.35%), isopropyl-5-methyl-(2E)-hexenal (8.6%), methyl octadecenoate (6.57%), and citronellyl acetate (5.87%). Both bentonite and resin were superior in decreasing the ratio of volatile compounds compared with other bleaching materials used. Resin immobilized medium was significantly affected (p < 0.05), raising the smoke point. These results highlighted some information regarding the characteristics of volatile compounds that result after the physical elution of olive oil through selected adsorbents.


Assuntos
Bentonita , Carvão Vegetal , Cromatografia Gasosa-Espectrometria de Massas , Azeite de Oliva , Alimentos , Ácido Hipocloroso , Resinas Vegetais , Compostos de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...